Zuschriften

Difluoromethylenation

Difluoromethyl Phenyl Sulfone as a Selective Difluoromethylene Dianion Equivalent: One-Pot Stereoselective Synthesis of *anti-2*,2-Difluoropropane-1,3-diols**

G. K. Surya Prakash,* Jinbo Hu, Thomas Mathew, and George A. Olah

That more and more organofluorine compounds have been found to display biological effects such as mimicry, blocking, polarity, and lipophilicity is attributed to the unique properties of the fluorine atom.^[1] For instance, the C-F bond mimics the C-H bond because of its similar bond length, and the difluoromethylene group is isosteric and isopolar to an ethereal oxygen atom.^[2] Hence, the synthesis of fluorinecontaining analogues of bioactive natural products is of great interest because of their potential applications in the pharmaceutical industry.[3] Since anti-1,3-diol functionality is a fundamental unit in many naturally occurring compounds, its stereoselective preparation is attractive to synthetic organic chemists.^[4] anti-2,2-Difluoropropane-1,3-diols 3 are a group of interesting compounds, but not much is known about their synthesis. To the best of our knowledge, the only reported method to synthesize these compounds is by diasteroselective Meerwein-Pondorff-Verley reduction of α,α -difluoro- β -hydroxy ketones.^[5] The disadvantage of this approach is the need to prepare the α,α -difluoro- β -hydroxy ketone precursors

In 1997, we reported the preparation of difluorobis(trimethylsilyl)methane (TMSCF₂TMS) as a potential difluoromethylene dianion ("-CF₂-") equivalent.^[2] However, TMSCF₂TMS was found only to couple with one equivalent of an aldehyde, for example, with benzaldehyde to give 2,2-difluoro-1-phenylethanol (after acid hydrolysis).^[2]

We recently disclosed alkoxide- and hydroxide-induced nucleophilic trifluoromethylation of nonenolizable carbonyl compounds and disulfides by using trifluoromethyl sulfone or sulfoxide. The chemistry is based on the nucleophilic attack by alkoxide (commonly potassium *tert*-butoxide) or hydroxide on the sulfur center of trifluoromethyl phenyl sulfone (4a) or sulfoxide (4b) to release a trifluoromethyl anion [Scheme 1, Eq. (1)]. We assumed that a similar type of S–C bond cleavage could occur with difluoromethyl phenyl

^[*] Prof. Dr. G. K. S. Prakash, Dr. J. Hu, Dr. T. Mathew, Prof. Dr. G. A. Olah Loker Hydrocarbon Research Institute and Department of Chemistry University of Southern California University Park, Los Angeles, CA 90089-1661 (USA) Fax: (+1) 213-740-6270 E-mail: gprakash@usc.edu

^[**] Support of our work by Loker Hydrocarbon Research Institute is gratefully acknowledged. Professor G. Rasul is thanked for his help with preliminary theoretical calculations.

Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.

selectively (see Scheme 2). An excess of *t*BuOK facilitates completion of S–C bond-cleavage

process, which is similar to our previous observations with the trifluoromethyl sulfone

system.^[6] Furthermore, the formation and consumption of PhSCF₂H (**14**) with time (Table 1, entries e and f) indicate that there is an equilibrium between anionic species **16** and **14** with protonation/deprotonation by *t*BuOH/*t*BuOK.

Reaction of benzaldehyde (**1a**) and sulfone **2**/*t*BuOK in DMF is much more intriguing and rewarding (see Scheme 3). Similar to the reac-

tion with diphenyl disulfide, PhSO₂CF₂H (1.0 equiv)/tBuOK (3.0 equiv) reacts with **1a** (2.0 equiv) at −50 °C→RT over 90 min to generate monosubstituted product **17** (¹⁹F NMR: 41 % yield), as earlier shown by Stahly in aqueous NaOH,^[8] and disubstituted product **3a**

(19F NMR: 58% yield, anti/syn = 98/1). When 2

(1.0 equiv)/tBuOK (4.0 equiv) reacted with

PhCHO (3.0 equiv) at -50 °C \rightarrow RT for 8 h with

Scheme 1. Mechanistic considerations. R = H, alkyl group. E, E' = electrophiles, such as disulfides and aldehydes.

Table 1: Difluoromethylenation of PhSSPh with 2.

$$\begin{array}{c} O \\ Ph-\overset{\circ}{S}-CF_2H + tBuOK + PhSSPh \\ \hline O \\ RT \\ \end{array} \begin{array}{c} DMF \\ \hline Ph-\overset{\circ}{S}-CF_2SPh \\ \hline O \\ \end{array} + PhSCF_2SPh + PhSCF_2H \\ \end{array}$$

(1)

2 11 12 13 14 Product yield [%][a] Entry Reactant ratio [equiv] Reaction time tBuOK 12 13 2 14 5 1.0 1.0 30 min 76 0 91 Ь 1.5 1.0 50 min 3 6 2.5 2.0 14 h 22 14 3.0 2.0 4 h 41 44 14 4 h 84 3.5 2.0 0 16 1 3.5 2.0 15 h 0 97 3 0

[a] Yields were determined by ¹⁹F NMR spectroscopy with PhOCF₃ as the internal standard.

sulfone 2 (PhSO₂CF₂H). The chemistry of 2 is even more interesting than that of 4a [Scheme 1, Eq. (2)]. It is known that the hydrogen atom of the CF₂H group in compound 2 is rather acidic, and a common base such as sodium methoxide or even aqueous sodium hydroxide can deprotonate it in an equilibrium mode to generate PhSO₂CF₂⁻ (6).^[7,8] In 1989, Stahly showed that anion 6, generated in situ, can react with aldehydes to give difluoromethylated carbinols in aqueous NaOH in the presence of a phase-transfer agent.[8] However, he did not

observe any S–C bond cleavage in aqueous NaOH (RT, 4 h). Obviously, aqueous NaOH is not nucleophilic enough to activate the S–C bond scission, and with hydroxide or alkoxide the deprotonation of difluoromethyl sulfone $\bf 2$ is much faster than S–C bond cleavage. Thus, by use of an appropriate alkoxide such as tBuOK that acts both as a base and a nucleophile, sulfone $\bf 2$ might react stepwise with two electrophiles to give new difluoromethylene-containing products [Scheme 1, Eq. (2)]. Thus, difluoromethyl phenyl sulfone $\bf 2$ can be regarded as a selective difluoromethylene dianion ("CF₂^{2–}") synthon.

With the above considerations in mind, we first treated the PhSO₂CF₂H/tBuOK system with diphenyl disulfide (PhSSPh) as an electrophile. The results are shown in Table 1. By using different reactant ratios, both monosubstitution product 12 and disubstitution product 13 can be obtained at room temperature with high selectivity (Table 1, entries b and g). This result confirms our previous assumption that the reactivities of deprotonation and S—C bond cleavage are different, and that these two steps can be controlled

Scheme 2. Stepwise formation of 12 and 13.

Zuschriften

Scheme 3. Reaction of PhCHO (excess) and **2**/tBuOK. [a] ¹⁹F NMR for *anti* isomer: $\delta = -120.9$ ppm (pseudo t, 3J (F,H) = 11.4 Hz, 2F). [b] ¹⁹F NMR: $\delta = -104.4$ ppm (dd, J = 238.0, 2.8 Hz, 1F); $\delta = -119.8$ ppm (dd, J = 238.0, 21 Hz, 1F).

activation by tBuOK, alkoxide 17b is formed in situ and undergoes S-C bond fission to generate dianionic intermediate 18, which can react with a further equivalent of benzaldehyde to form disubstituted anti-diol 3a in excellent yield (19F NMR: 92%, isolated product: 82%) and high diastereoselectivity (anti/syn = 97/3, de =94%). The observed high diastereoselectivity can be interpreted by a charge-charge repulsion effect during the second addition (Scheme 4). To the best of our knowledge, this may be the first time that high diastereoselectivity has been achieved in the reaction of a dianion with another, neutral electrophile under the influence of an intramolecular charge-charge repulsion effect (during product formation) rather

than the traditional steric control (based on Cram's rule). $^{[9,10]}$

Table 2 demonstrates the application of this methodology to the synthesis of various 2,2-difluoropropane-1,3-diols with high stereoselectivity from nonenolizable aldehydes.^[11] The yields of diols are a bit lower for electron-rich aldehydes (entries d and g), probably due to the relative instability of the corresponding dianion intermediates.

Besides symmetrical *anti-*2,2-difluoropropane-1,3-diols, this new methodology can also be used to synthesize unsymmetrical *anti-*2,2-difluoropropane-1,3-diols. Scheme 5 shows an example of this type of synthesis. Difluoro(phenylsulfonyl)methyl-substituted alcohol **17a** can be easily obtained and isolated by Stahly's approach in high yield.^[8] Activation of **17a** with *t*BuOK generates the dianion

intermediate **18**, which further reacts with *p*-chlorobenzaldehyde **1b** to give unsymmetrical *anti-*2,2-difluoropropane-1,3-diol **20** (after hydrolysis) with high diastereoselectivity.

In conclusion, potassium *tert*-butoxide-induced difluoromethylenation with difluoromethyl phenyl sulfone enables us to synthesize both symmetrical and unsymmetrical *anti-2,2*-difluoropropane-1,3-diols with high diastereoselectivity (up to 94% *de*). This unusual type of high diastereoselectivity was obtained by means of an intramolecular charge–charge repulsion effect rather than the traditional steric control (based on Cram's rule). Difluoromethyl phenyl sulfone can be used as a selective synthon for the difluoromethylene dianion (${}^-\text{CF}_2{}^-$), which can couple with two electrophiles (e.g., diphenyl disulfide or nonenolizable aldehydes) to give new difluorinated products. Since difluoromethyl phenyl sulfone can be readily prepared from inexpensive chemicals such as

PhSO₂CF₂H (2)/tBuOK

DMF

-50 °C
$$\rightarrow$$
 RT

3a (82 % isolated)

anti- (S,S- or R,R-)

17b

18

OH OH

CF₂

DH

OH

OH

OH

OF

F₂

19

anti- (S,S- or R,R-)

Scheme 4. Proposed mechanism of diastereoselective formation of 3a from PhCHO and 2/tBuOK.

Table 2: Preparation of 2,2-difluoropropane-1,3-diols **3** from aldehydes **1**(3 equiv) and difluoromethyl phenyl sulfone **2** (1 equiv) with tBuOK (4 equiv) in DMF at -50 °C \rightarrow RT.

Entry	Substrate 1	Product 3	Yield [%] ^[a]	anti/syn ^[b]	de [%]
a		OH OH C F ₂	82	97:3	94
b	CI-OH	OH OH CI F ₂ CI	78	94:6	88
С	Br $\overset{O}{\longleftarrow}_{H}$	OH OH C F ₂ Br	70	96:4	92
d	MeO-	OH OH C MeO OMe	52	94:6	88
e	O H	OH OH	69	97:3	94
f	$\bigcirc \!$	OH OH C Ph	75	96:4	92
g	H	O C O C O C O C O C O C O C O C O C O C	63	93:7	86

[a] Yields of isolated product. [b] anti/syn ratios were determined by ¹⁹F NMR spectroscopy.

Scheme 5. Synthesis of unsymmetrical anti-2,2-difluoropropane-1,3-diol 20.

CF₂ClH or CF₂Br₂, [12,13] this new methodology provides a convenient and efficient synthetic tool for many potential applications.

Received: June 18, 2003 [Z52172]

Keywords: alcohols · C—C coupling · diastereoselectivity · fluorine

- [1] Organofluorine Compounds. Chemistry and Applications (Ed.: T. Hiyama), Springer, New York, 2000.
- [2] A. K. Yudin, G. K. S. Prakash, D. Deffieux, M. Bradley, R. Bau, G. A. Olah, J. Am. Chem. Soc. 1997, 119, 1572-1581, and references therein.
- [3] J. McCarthy, Utility of Fluorine in Biologically Active Molecules, ACS Fluorine Division Tutorial, 219th National ACS Meeting, (San Francisco), 2000.
- [4] S. Masamune, W. Choy, Aldrichimica Acta 1982, 15, 47-64.
- [5] M. Kuroboshi, T. Ishihara, Bull. Chem. Soc. Jpn. 1990, 63, 1185 1190.
- [6] G. K. S. Prakash, J. Hu, G. A. Olah, Org. Lett. 2003, 5, 3253-3256.
- [7] J. Hine, J. J. Porter, J. Am. Chem. Soc. 1960, 82, 6178-6181.
- [8] P. Stahly, J. Fluorine Chem. 1989, 43, 53-66.
- [9] Recently, two groups reported the control of stereoselectivity by electrostatic repulsion. a) In 1997, Mall and Stamm reported that electrostatic repulsion by the charged tail of a radical controls the stereochemistry of coupling with the anthracenide radical anion: T. Mall, H. Stamm, J. Chem. Soc. Perkin Trans. 2 1997, 2135-2140. b) In 2001, Uneyama et al. reported control of diastereoselectivity by electrostatic repulsion between the negative charge density on a trifluoromethyl group and that of electron-poor aromatic rings: T. Katagiri, S. Yamaji, M. Handa, M. Irie, K. Uneyama, Chem. Commun. 2001, 2054-2055; T. Katagiri, K. Uneyama, Chirality 2003, 15, 4-9.
- [10] DFT calculations (B3LYP6-31G**//B3LYP6-31G* + ZPE level) on 3,3-difluoro-2,4-pentanediolate dianion as a model showed the anti structure to be 5.5 kcal mol⁻¹ more stable than the corresponding syn structure. Furthermore, the absence of changes in the anti/syn diol ratios on prolonged treatment with base indicate lack of product reversibility.
- [11] Typical procedure for tBuOK-induced difluoromethylenation: The reaction was commonly carried out in a Schlenk flask under an argon atmosphere. A solution of tBuOK (1.12 g, 10 mmol) in DMF (5 mL) was added to solution of difluoromethyl phenyl sulfone (2, 480 mg, 2.5 mmol) and benzaldehyde (800 mg,

7.5 mmol) in DMF (5 mL) at -50 °C. The reaction flask was then sealed, and the reaction mixture was then stirred at -50°C for 1 h, followed by stirring at -50°C→RT overnight. The reaction mixture was quenched with ice water (20 mL), and extracted with diethyl ether (3× 20 mL). The combined ethereal phase was washed with a saturated aqueous solution of NH₄Cl, and then with water. After drying over MgSO₄, the diethyl ether solvent was removed under vacuum. The crude product was further purified by chromatography on a silica gel column (hexanes/ethyl acetate 9/1, then 1/1) to give 2,2-difluoro-1,3-diphenyl-1,3-propanediol as a white crystalline solid, (541 mg, 82% yield, anti/syn = 97/3, determined by ¹⁹F NMR). anti isomer: ¹H NMR ([D₆]actone): $\delta = 5.27$ (m, 4H), 7.28–7.50 ppm (m, 10H); 19 F ([D₆]acetone): δ = -120.9 ppm (dd, J = 11 Hz, J = 11 Hz, 2 F); HRMS (DCI/NH₃): m/z calcd for $C_{15}H_{18}F_2NO_2$ [$M+NH_4^+$]: 282.1305, found: 282.1304.

- [12] G. K. S. Prakash, J. Hu, G. A. Olah, J. Org. Chem. 2003, 68, 4457 – 4463, and references therein.
- [13] J. Hu, Ph.D. Dissertation, University of Southern California, 2002.